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Abstract

An analytical model for dynamic wheel–rail interaction at rail surface irregularities of arbitrary shape is presented. The

model is formulated in the frequency domain and leads to relatively simple closed-form solutions for the variables which

describe the dynamic interaction. With the help of the model, basic features of the dynamic wheel–rail interaction at short

rail irregularities are identified. The focus is placed on short irregularities with a broad-band spectrum. The model is

applied to calculate dynamic wheel–rail contact forces for a sample population of measured rail welds. General

quantitative relationships between the rail geometry, the train speed and the level of the dynamic contact force are derived.

Statistical distributions of geometrical properties of rail welds and the corresponding contact forces are derived. This

allows for an easy estimation of the level of dynamic forces occurring over a railway network, given the availability of

geometrical measurements.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Continuously welded rail (CWR) nowadays is the standard in modern railway tracks, and the traditional
bolted rail connections are often only still present in the form of insulated rail joints (IRJ) for detection and
signalling purposes. The deflection of a bolted rail joint under a moving train axle loading leads to a high
dynamic impact component, which is a source of rapid track deterioration and high noise levels, as pointed
out in Refs. [1–3], and therefore the welded continuous connection was a significant improvement.

The most common types of rail welding are flash butt welding and aluminothermic or thermite welding. The
application of the first type is almost fully automated, including the positioning of the rail ends to be joined,
and therefore often applied in the construction of new tracks, whereas the second type requires handicraft and
is therefore often applied in repair and maintenance work. However, the final grinding of the rail surface is in
most cases done manually for both types of welding. Only in some cases the welds are being treated by a
grinding train, on newly built tracks, yielding a high quality of the surface. In the literature, several studies
have been published on rail welds, most of them dealing with metallurgical or related aspects. These aspects
include the mechanical and micro-structural properties of welds [4], damage types occurring at welds [5],
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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testing and inspection methods [6], the effects of heat transfer during welding on defect formation [7,8], the
effects of post-welding heat treatment [9], the measurement of residual stresses after welding [10,11] and their
alleviation [12], fatigue crack growth in a weld under residual and temperature stresses [13] and the influence of
loose sleepers on the bending fatigue of rail welds [14]. In Ref. [15] attention was paid to the relationship
between train loading, weld geometry and weld failure modes. From measurements an approximately linear
relationship was found between the train speed and the dynamic impact factor (DAF) occurring at welds.

Rail welds are very important in the context of dynamic wheel–rail interaction and track deterioration. In
the majority of the cases, after welding a railhead irregularity along the rail results at the position of the weld.
This can be due to inaccurate rail end positioning, the manual grinding of the rail surface, and in many cases
the influence of inhomogeneous material shrinkage after cooling down in combination with early grinding.
The irregularity has a typical length between 0.5 and 1m. Therefore, in general the rail welds yield a significant
contribution to the short-wave part of the track irregularity spectrum. This aspect the rail weld has in common
with or other short track defects, such as short-pitch corrugations [16–18], squats [19,20], rail surface damage
induced by rolling contact fatigue (RCF) [18,21–25], rail end unstraightness [26] and other geometrical
imperfections of the wheel–rail interface. An overview is given in Ref. [27]. However, especially on new tracks
the short-wave contribution is almost entirely determined by the rail weld geometry. This is very important
due to its direct relation with the rate of track deterioration: the different frequency components of the power
of the dynamic wheel–rail interaction force are dissipated in the vibrations of different components of the
track–vehicle system, and consequently determine their rate of deterioration. Detection of short-wave track
defects was addressed in, e.g. Refs. [28,29].

The relationship between the geometry of rail welds and the dynamic wheel–rail interaction has been dealt
with extensively by Steenbergen and Esveld [30,31], on the basis of finite-element (FE) simulations for a
number (239) of measured welds. However, these simulations have a number of disadvantages. These include
the sensitivity of quantitative results in the high-frequency regime (500–2000Hz) to filtering and damping
(see also Refs. [32,33]), the validation of artificial damping and the simulation time needed for large
measurement samples.

The investigation of the relationship between track geometry and interaction forces is relevant from another
viewpoint. Railway track assessment is widely based on geometrical requirements without direct relationship
to dynamic train–track interaction forces. This may be acceptable from the viewpoint of train passenger and
vehicle ride comfort, but inconsistent from the viewpoint of track deterioration and the resulting necessity of
maintenance, such as pointed out in, e.g. Ref. [34]. Therefore, in Refs. [30,31] also a more adequate assessment
method for rail weld geometry was elaborated, relative to the conventional method which is based of the
principle of vertical tolerances. The new method, which determines a Quality Index (QI) for the weld,
dependent on the train speed for the track section, aims at a reduction of dynamic wheel–rail forces at welds
and has been standardised in the Netherlands.

This paper investigates dynamic wheel–rail interaction at rail welds using an analytical approach. The
method will be based on a simplified wheel–rail interaction model, and will be formulated in the frequency
domain. The problems connected to FE modelling are avoided, but the method also has a disadvantage:
because of the fact that the model is simplified and its linearity, it is not suitable for quantitative predictions
with a high level of accuracy. The aim of the approach in this paper is therefore not to calculate quantitative
results with a high level of accuracy, but to clarify the basic mechanisms in dynamic wheel–rail interaction due
to short disturbances in the interface, to establish theoretical relationships, and to investigate trends. The
results then can be compared to the FE results in Ref. [31]. Furthermore, the general formulations allow for an
application of the results of the investigation on any wheel–rail interfacial irregularity with a broad-band
spectrum.

The structure of this paper is as follows. In Section 2 a model for dynamic wheel–rail interaction is
presented, together with the underlying assumptions. This model is described mathematically in Section 3,
where also solutions for the main variables are derived. In Section 4 a model is presented to describe rail
surface irregularities of arbitrary shape, representing the system excitation. Combination of the results of
Sections 3 and 4 yields theoretical expressions for the wheel–rail contact force, which are analysed in Section 5.
In Section 6, basic features of the dynamic wheel–rail interaction are discussed using model simulations for an
elementary excitation. Simulation results for a set of measured rail welds are presented and discussed in
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Section 7. These results are compared to the FE results obtained in Ref. [31]. Section 8 considers the dynamic
wheel–rail interaction at rail welds on a railway network from a statistical viewpoint. In Section 9 the relation
between the presence of rail welds and the occurrence of corrugation is discussed, and conclusions are
presented.

2. Model for dynamic wheel–rail interaction at short rail irregularities

The following assumptions are adopted in the model being used to analyse the dynamic wheel–rail contact:
1.
Fig

wit
The irregularity of the rail surface is short compared to the ratio of the train speed to the eigenfrequency of
the bogie motion. Under these circumstances (f420Hz), the wheelset motion may be considered as isolated
from the bogie and car body motion. Generally, this holds for welding irregularities, which have a length-
scale of about 1m [30]. In this case, only the unsprung vehicle mass of the vehicle plays a role.
2.
 Wave propagation in the rail as well as physical damping mechanisms are not accounted for. The energy
input in the rail due to the dynamic contact force generated by the rail irregularity is mostly radiated into
the rail at the contact point and dissipated in the rail system components, mainly the railpads and the
ballast. However, in order to determine the local maximum dynamic wheel–rail contact force which occurs
at some point along an irregularity, a relatively short time-scale is considered. Wave propagation and
damping mechanisms are irrelevant within these small time-scales; they only play a role at increasing time
scales.
3.
 The considered irregularities lead to continuous single-point contact in time. Transient double-point
contact between wheel and rail leads to completely different mechanisms in the wheel–rail interaction, as
has been shown in Ref. [1], and is therefore avoided. This is realistic for rail welds (but not for rail joints,
like IRJ or bolted connections).
4.
 The rail is modelled as continuously supported. This is a significant simplification, which will especially
affect the model results for welding irregularities having a predominant wavelength that is comparable to
the sleeper spacing distance. However, this simplification is justified by the following reasons. As has been
mentioned in the Introduction, it is not the primary aim of this paper to predict quantitative results with a
high level of accuracy, but to investigate basic features that can explain trends. Moreover, rail welding
irregularities generally have a broad-band spectrum and do not exhibit any preferred wavelength.
Therefore, the broad spectrum of the excitation has an averaging effect on peaks in the track receptance.
This effect becomes even stronger when trends are considered for a large number of measured welds.
Finally, it was shown in Ref. [31] that the shortest waves in the rail irregularity generate the highest peak
contact forces. This is because the inertia of the system dominates the response. Since these peak forces are
mainly of interest in this study, the rail support is less relevant. For a comparison of receptance functions of
continuously and discretely supported rails, and the effect of the sleeper positions, see e.g. Refs. [32,35–37].

In Fig. 1 two models are shown for dynamic wheel–rail interaction analysis at short rail irregularities with a
broad-band spectrum; some notations are introduced in the figures. In the model in Fig. 1a the unsprung mass
bogie (fixed)

z(x)

x

V

EI, �Aw(x, t)

k1

kH

mw u(t)

kf

bogie (fixed)

z(t)

x

EI, �Aw(x, t)

k1

kH

mw u(t)

kf

x=0

. 1. Wheel–rail interaction models; moving wheel model on geometrical rail irregularity z(x) (a) and equivalent standing wheel model

h excitation z(t) (b).



ARTICLE IN PRESS
M.J.M.M. Steenbergen / Journal of Sound and Vibration 312 (2008) 606–629 609
of a train axle moves with a speed V along the rail. With respect to the vehicle, the unsprung mass of an axle,
the Hertzian contact stiffness and the primary suspension stiffness are included in the model. The vertical
geometry of the rail, which is continuously supported, is described by z(x). This moving wheel problem may be
simplified to a standing wheel problem, based on assumption (2). This approach is widely accepted in the
investigation of dynamic wheel–rail interaction in the high-frequency regime (see e.g. Refs. [36,38]). The
standing wheel model is shown in Fig. 1b. The excitation—as the Hertzian spring contact rolls over the rail
geometry z(x) at velocity V—changes into an excitation z(t) of the Hertzian contact spring at x ¼ 0 as a
function of time.
3. Mathematical problem formulation and solution

The mathematical statement for the model as shown in Fig. 1b is given in the following. The equation of
motion for the rail is given by

EI
q4wðx; tÞ

qx4
þ rA

q2wðx; tÞ
qt2

þ kf wðx; tÞ ¼ �F ðtÞdðxÞ. (1)

The equation of motion for the wheel system is given by

mw

d2uðtÞ

dt2
þ k1uðtÞ ¼ F ðtÞ. (2)

The contact force in the wheel–rail contact point is given as

F ðtÞ ¼ kH ð�uðtÞ þ wð0; tÞ þ zðtÞÞ. (3)

Assuming an infinitely small but non-zero damping in the system, the rail is undisturbed at x ¼7N at any
time moment (i.e., Sommerfeld’s radiation conditions must be satisfied). Further, all initial conditions are
assumed zero:

uð0Þ ¼ _uð0Þ ¼ 0 and wðx; 0Þ ¼ _wðx; 0Þ ¼ 0. (4)

Since the model is linear, the static load and the resulting steady-state rail displacement field are not taken
into consideration; only the dynamic contact force and dynamic beam deflections are considered. Further, a
linearised Hertzian spring is adopted in the model in order to enable an analytical approach in the frequency
domain; this assumption and its validity domain will be discussed in Section 6. The equation of motion (1) of
the beam in the t, x domain is rewritten as

q4wðx; tÞ
qx4

þ
1

a2

q2wðx; tÞ
qt2

þ b2wðx; tÞ ¼ �
1

EI
F ðtÞdðxÞ with a ¼

ffiffiffiffiffiffiffi
EI

rA

s
; b ¼

ffiffiffiffiffiffi
kf

EI

r
. (5)

Laplace-transforming this equation with respect to time, with wðx; 0Þ ¼ _wðx; 0Þ ¼ 0, yields

~q
4
~wðx; sÞ

qx4
þ

s2

a2
þ b2

� �
~wðx; sÞ ¼ �

1

EI
~F ðsÞdðxÞ (6)

with the transformed variable indicated by a tilde. Because the beam is undisturbed at x ¼7N for any time
moment, the solution for the governing variable will be determined by applying a Fourier transformation with
respect to x to Eq. (6). The applied Fourier transform is defined according to

āðkxÞ ¼

Z 1
�1

aðxÞ eikx dx. (7)

The Fourier transformed governing equation (6) is given by

~̄wðk; sÞðk4
þ s2=a2 þ b2

Þ ¼ �
1

EI
~F ðsÞ (8)
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with the forward Fourier-transformed variable indicated by a bar. This yields for the solution ~̄w:

~̄wðk; sÞ ¼ �
1

EI

~F ðsÞ

k4
þ s2=a2 þ b2

. (9)

The inverse Fourier transform of this solution yields the following particular solution in the x,s domain:

~wðx; sÞ ¼ �
~F ðsÞ

2pEI

Z 1
�1

e�ikx

k4
þ s2=a2 þ b2

dk. (10)

The integral can be calculated by contour integration, adding a semicircle joining �N to N and applying,
respectively, Jordan’s lemma and Cauchy’s residue theorem. The poles of the integrand are equal to the
solutions of the equation

k4
þ s2=a2 þ b2

¼ 0) k1;2;3;4 ¼ ð�1� iÞk0; k0 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

a2
þ b24

r
. (11)

The individual poles are written as

k1 ¼ 1þ ið Þk0; k2 ¼ �1þ ið Þk0; k3 ¼ �1� ið Þk0; k4 ¼ 1� ið Þk0. (12)

By analysis of the roots it can be shown that for all s40 (s ¼ s+io), a and b, independently of the sign of
o, holds: Im(k1)40, Im(k2)40, Im(k3)o0, Im(k4)o0. Or, poles k1 and k2 are situated in the upper half-plane
and k3 and k4 in the lower half-plane of the complex k-plane.

According to Jordan’s lemma, limR!1

R
C

f ðkÞ e�ikx dx ¼ 0 ðx40Þ if the closing contour C is in the
third and fourth quadrant (lower half-plane), and f(k) tends uniformly to zero for increasing radius R

of the contour. An analogous statement holds for xo0, yielding a closing contour in the upper half-plane
of the complex k-plane. Since the integrand is single-valued, Cauchy’s residue theorem can be applied now.
First it will be applied for the first contour, x40; 2 poles are situated inside the contour. The residue theorem
states Z 1

�1

e�ikx

k4
þ s2=a2 þ b2

dk ¼ 2pi
X
k1 ;k2

Residue of
e�ikx

k4
þ s2=a2 þ b2

at k1;2 ¼ 2pi
X
k1;k2

e�ikx

4k3

����
k1;2

. (13)

Evaluating this expression with the poles defined by Eq. (12) yieldsZ 1
�1

e�ikx

k4
þ s2=a2 þ b2

dk ¼ 2pi
X
k1;k2

e�ikx

4k3

����
k1;2

¼ 2pi
e�ið1þiÞk0x

4 ð1þ iÞk0ð Þ
3
þ

e�ið�1þiÞk0x

4 ð�1þ iÞk0ð Þ
3

� �

¼
p

8k3
0

ð1� iÞ eð1�iÞk0x þ ð1þ iÞ eð1þiÞk0x
� �

. ð14Þ

Similarly, the expression for the second closed contour can be found (the contour is in the negative sense; a
minus should be added), lower half-plane, x40:Z 1

�1

e�ikx

k4
þ s2=a2 þ b2

dk ¼ � 2pi
X
k3;k4

e�ikx

4k3

����
k3;4

¼ �2pi
e�ið�1�iÞk0x

4 ð�1� iÞk0ð Þ
3
þ

e�ið1�iÞk0x

4 ð1� iÞk0ð Þ
3

� �

¼
p

8k3
0

ð1� iÞeð�1þiÞk0x þ ð1þ iÞeð�1�iÞk0x
� �

. ð15Þ

If xo0 then x ¼ �|x|, whereas if x40 then x ¼ |x|. Therefore, the integral can be evaluated for arbitrary
x as Z 1

�1

e�ikx

k4
þ s2=a2 þ b2

dk ¼
p

8k3
0

ð1� iÞ eð�1þiÞk0 xj j þ ð1þ iÞ eð�1�iÞk0 xj j
� �

. (16)
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Substituting Eq. (16) into Eq. (10) yields the solution in the x,s domain for the load. This solution is
given by

~wðx; sÞ ¼ �
~F ðsÞ

16EIk3
0

ð1� iÞ eð�1þiÞk0 xj j þ ð1þ iÞ eð�1�iÞk0 xj j
� �

; k0 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

a2
þ b24

r
. (17)

Next, expressions are derived for the oscillator, i.e. the wheel mass. Assuming uð0Þ ¼ _uð0Þ ¼ 0, its equation
of motion, Laplace-transformed with respect to time (the transformed variable is indicated by a tilde), is given
as follows:

mws2 þ k1

� �
~uðsÞ ¼ ~F ðsÞ ) ~uðsÞ ¼

~F ðsÞ

mws2 þ k1
. (18)

The coupling between Eqs. (17) and (18) is established through the interaction force according to Eq. (3).
The Laplace-transform of this expression is given by

~F ðsÞ ¼ kH ð� ~uðsÞ þ ~wð0; sÞ þ ~zðsÞÞ. (19)

Substitution of expressions (17) for ~wð0; sÞ and (18) for ~uðsÞ yields, after some elaboration, the final
expression for the contact force ~F ðsÞ in the Laplace-domain is given as (with s ¼ s+io):

~F ðsÞ ¼
~zðsÞ

1=kH þ 1= mws2 þ k1ð Þ þ 1= 8EIk3
0

� � with k0 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

EI
ðrAs2 þ kf Þ

4

r
. (20)

The wheel displacement is given by Eq. (18). Substitution of Eq. (20) yields

~uðsÞ ¼
~zðsÞ

1þ mws2 þ k1ð Þ 1=kH þ 1= 8EIk3
0

� �� � . (21)

An explicit expression for the rail displacement at the contact point can be found by substituting Eqs. (18)
and (20) into Eq. (19):

~wð0; sÞ ¼ ~zðsÞ 2�
1

8EIk3
0 1=kH þ 1= mws2 þ k1ð Þ
� �

þ 1

 !
. (22)

The expressions (20)–(22) must be transformed to the time domain. This inverse Laplace-transform (which
is basically an integration over the frequency) will be computed numerically. Because of the fact that the
integrand is not single-valued (due to the presence of radicals), the analytical inverse transform, by means of
contour integration, implies the more complex branch cutting. The numerical procedure is explained in the
following. The inverse Laplace-transform of ~F ðsÞ is defined as

F ðtÞ ¼
1

2pi

Z sþi1

s�i1

~F ðsÞ est ds. (23)

Substituting s ¼ s+io with s some small positive real value, or ds ¼ i do, and �NoooN, yields:

F ðtÞ ¼
est

2p

Z 1
�1

~F ðsþ ioÞ eiot do. (24)

The integrand in this expression can be elaborated as follows:

~F eiot ¼ Reð ~F Þ þ i Imð ~F Þ
� �

cos otþ i sin otð Þ

¼ Reð ~F Þ cos ot� Imð ~F Þ sin ot|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Real part

þi Reð ~F Þ sin otþ Imð ~F Þ cos ot
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Imaginary part

, ð25Þ

where the imaginary part of the integrand should add up to 0, as the force F(t) is real. This means, sinot

being anti-symmetric and cosot symmetric with respect to o, that Reð ~F Þ is a symmetric and Imð ~F Þ an
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anti-symmetric function of o. Therefore, the integral (24) may be written as follows:

F ðtÞ ¼
est

2p

Z 1
�1

Re ~F ðsÞ eiot
� �

do ¼
est

p

Z 1
0

Re ~F ðsÞ eiot
� �

do. (26)

This last expression will be used for numerical integration of solutions (20)–(22) in the Laplace domain.
In summary, the general expressions (in integral form) for the dynamic wheel–rail contact force, the wheel

displacement and the rail displacement in the contact point are given as a function of time, for an excitation
function z(t) with Laplace-image ~zðsÞ, by

F ðtÞ ¼
est

p

Z 1
0

Re
~zðsÞ

1=kH þ 1= mws2 þ k1ð Þ þ 1= 8EIk3
0

� � eiot

 !
do, (27)

uðtÞ ¼
est

p

Z 1
0

Re
~zðsÞ

1þ mws2 þ k1ð Þ 1=kH þ 1= 8EIk3
0

� �� � eiot

 !
do, (28)

wð0; tÞ ¼
est

p

Z 1
0

Re ~zðsÞ 2�
1

8EIk3
0 1=kH þ 1= mws2 þ k1ð Þ
� �

þ 1

 !
eiot

 !
do

with k0 ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

EI
rAs2 þ kf

� �4

r
; s ¼ sþ io. ð29Þ

4. Elementary model for description of rail surface irregularities

As has been stated in the Introduction, the present study focuses mainly on rail welds as a field of
application. In Refs. [30,31] a model for the vertical geometry of rail welds was proposed and developed; the
aim was to describe real measurements, and therefore the model was discrete. According to Ref. [30], the
surface of a rail weld may be described in the longitudinal direction by a sequence of discrete slopes which are
Gaussian distributed with zero mean value. Such a spatial or temporal sequence of slopes can be represented
as a summation of terms in the Laplace-domain, due to the linearity of this transform. This property will allow
for a simple derivation of some basic relationships for arbitrary irregularities. The vertical rail surface is
described as a function of the longitudinal coordinate x (xX0) by

zðxÞ ¼ y1xHðDx� xÞ þ ððy1 � y2ÞDxþ y2xÞHðx� DxÞHð2Dx� xÞ

þ ððy1 þ y2 � 2y3ÞDxþ y3xÞHðx� 2DxÞHð3Dx� xÞ

þ � � � þ ðy1 þ y2 þ y3 þ � � �ÞDxHðx� 3DxÞ. ð30Þ

The model is shown in Fig. 2a for the elementary case of a ramp with a single slope, and in Fig. 2b for an
irregularity comprising more discrete slopes.
z(x)

x

�1

�2

�3

Δx 2Δx 3Δx

(�1+�2+�3) Δx

(�1+�2) Δx

�1Δx

�Δx

z(x)

xΔx

�

Fig. 2. Quasi-discrete models to describe longitudinal wheel–rail contact surface irregularities; basic model with linear irregularity (ramp)

(a) and multi-linear irregularity (b).
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The expression in the time-domain becomes

zðtÞ ¼ y1VtHðDx=V � tÞ þ ððy1 � y2ÞDxþ y2VtÞHðt� Dx=V ÞHð2Dx=V � tÞ

þ ððy1 þ y2 � 2y3ÞDxþ y3VtÞHðt� 2Dx=V ÞHð3Dx=V � tÞ

þ � � � þ ðy1 þ y2 þ y3 þ � � �ÞDxHðt� 3Dx=V Þ. ð31Þ

The Laplace-image of a sequence of N discrete slopes becomes

~zðsÞ ¼
V

s2
1� e�sDx=V
	 
XN

n¼1

yne
�ðn�1ÞsDx=V ; 1pnpN. (32)

5. Parametrical analysis of the wheel–rail contact force

Substitution of Eq. (32) into Eq. (27) for the contact force yields an explicit integral expression for this force.
For a single ramp (with a single discrete slope, as depicted in Fig. 2a) the expression becomes

F contactðtÞ ¼
yV

p

Z 1
0

Re
1� e�sDx=V
� �

=s2

1=kH þ 1= mws2 þ k1ð Þ þ 1= 8EIk3
0

� � est eiot

 !
do. (33)

For the sequence of N discrete slopes, the expression for the contact force may be written as follows:

F ðtÞ ¼
1

p
V
XN

n¼1

yn

Z 1
0

Reðf nðsÞÞdo (34)

in which

s ¼ sþ io; f nðsÞ ¼
1� e�sDx=V
� �

e�ðn�1ÞsDx=V

1=kH þ 1= mws2 þ k1ð Þ þ 1= 8EIk3
0

� � est

s2
. (35)

It follows from Eq. (33) that a theoretical perfectly linear relationship exists between the slope of a ramp and
the dynamic contact force in the time domain. The relation between the contact force and the velocity cannot
be extracted explicitly from Eq. (33), but it will be shown later on that also this relationship is perfectly linear.
The same can be observed for the rail and wheel displacements in the time domain, according to Eqs. (28)
and (29).

It is noted that the time history of expression (34) consists of a linear superposition of terms (33) giving the
force occurring for a single ramp (as is expected for a linear system). This means that the component of the
force for each discrete slope yn as a function of time is proportional to yn. However, the maximum of Eq. (34)
is only reached for ymax if the time functions (the results of the integration over the frequency) in the separate
terms do not interact. This is not necessarily the case, and for an arbitrary geometry a mutual influence must
be expected, especially as the sampling basis Dx approaches zero. Therefore, a perfectly linear relation between
Table 1

Model parameter values

Parameter Value

Static wheelload, Q 112.5� 103N

Wheel radius, Rwheel 0.46m

Transversal railhead radius, Rrailhead 0.3m

Wheel mass (half unsprung mass), mw 900 kg (ICM-III passenger train)

Primary suspension stiffness, k1 2� 106N/m

Rail bending stiffness, EI 4.25� 106Nm2 (54 E1)

Rail distributed mass, rA 54.4 kg/m (54 E1)

Rail support stiffness, kf 50� 106N/m2
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Fmax and ymax does not exist. The bandwidth of such a relationship depends on the statistical distribution of
the slopes for a considered discretely sampled weld population (or alternatively, the wavelength-spectrum of a
weld population). This subject will be discussed in Sections 7 and 8.

6. Basic features of the dynamic wheel–rail interaction

In. Eq. (18) a linearisation of the nonlinear Hertzian contact stiffness has been applied to enable an
approach in the frequency domain. The linearisation is applied at the level of the static wheelload (which is
chosen as 112.5 kN), yielding a tangent stiffness. Application of the geometrical parameters according to
Table 1 then results into the following expression (according to Ref. [39]):

kH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� 1022Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RwheelRrailhead

p
3

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 1022Q

3

q
. (36)

The resulting linear stiffness will lead to reliable results for dynamic load fluctuations around this level.
According to the simplified expression (36), the Hertzian stiffness is governed by the third root of the
wheelload. Therefore, model results may be considered as reliable when the dynamic amplification factor
(DAF) does not exceed 2, as is clear from the following relationship:

kH ð2QÞ ¼
ffiffiffi
2

3
p

kH ðQÞ � 1:26kH ðQÞ. (37)

The smaller the value for the DAF, the higher the accuracy of the contact force will be. As will be shown
later on, in the region of interest of the irregularities to be considered, the DAF does not exceed a factor 2.
Unless indicated differently, the simulations in this and following sections use the parameter values indicated
in Table 1. Representative values have been chosen for the involved parameters. The static wheelload
corresponds to the nominal axle load of 225 kN which is allowed in many countries for conventional rail
traffic [39]. The rail properties of the standard 54 E1 profile are used. The value for the rail support stiffness is
the one which is used in the design of embedded rail structures [40]. The adopted wheel mass corresponds to an
unsprung mass of 1800 kg, which is a common value for conventional passenger trains. No damping is present.
This is expected to have a negligible influence on the first impact force in the contact, as it is dominated by the
wheel and rail inertia, and the damping in the wheel–rail interface is negligible.

The studied wheel–rail system can be characterised in the frequency-domain by means of the spectrum ~F ðoÞ
of the contact force due to a unit pulse excitation ~zðsÞ ¼ 1 (according to Eq. (20); s ¼ s+io with s ¼ 0). The
absolute value of this spectrum is shown in Fig. 3. A narrow and sharp peak appears around 45Hz, followed
by a gradually increasing and declining frequency content in the region between 200 and 3000Hz, with a
maximum around 1000Hz. The peak at the lower frequency is completely governed by the rail support
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Fig. 3. Absolute value of the spectrum of the contact force in the wheel–rail system due to a unit pulse excitation: reference (——); support
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stiffness, as is shown in Fig. 3 for two variations of this stiffness. In the integration process for the excitations
that will be considered, this peak only has a minor contribution, indicating a limited impact of the support
stiffness on the time-domain response.

In the following, the influence of the velocity in Eq. (34) is considered, for the basic case of a single ramp.
Because the linear influence of the slope y is known, y is kept constant at 2mrad. The contact force is then
calculated for the velocities v ¼ 11.1, 22.2, 38.9, 55.6 and 83.3m/s (which is 40, 80, 140, 200 and 300 km/h).
For each case the maximum value of the contact force is determined, occurring in the time interval 2Dx/V. The
length of the basis is chosen as Dx ¼ 25mm. The time histories of these contact forces are shown in Fig. 4 for a
duration 2Dx/V. The contact force increases with the velocity, and for lower velocities a dip in the contact
force occurs after reaching the transition from the inclined part of the ramp to the horizontal part.
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The extreme values of the force using a basis of 5mm show no consistent trend, because for high velocities
the time interval corresponding to this length is too short for the force to reach its first peak that would occur
without the second transition in the ramp, from the inclined part of the ramp to the horizontal part (apart
from the fact that a real contact patch is larger than 5mm). For a basis of 25mm this is no longer the case; the
trend of the maximum dynamic contact force as a function of the velocity is shown in Fig. 5. It can be
concluded that for a rail irregularity with a single constant slope, the first peak force (commonly denoted as
P1) is perfectly and directly proportional to the speed.

In Ref. [31], the following approximate relationship has been established between the maximum dynamic
force occurring at rail welds, their maximum absolute inclination, and the train speed:

Fdyn; max ¼ gV y ðwith y ¼ tan yÞ ðF ðkNÞ; V ðm=sÞ; y ðmradÞÞ. (38)

In Ref. [31] the factor g ¼ 0.22 was found for this relationship. According to Fig. 5 the following
relationship is found for a ramp with a single slope:

Fdyn;max ¼ 0:36V for y ¼ 2mrad; or g ¼ 0:18. (39)

The coefficients found in both cases are very similar. It is noted that the dimensions in Eqs. (38) and (39) are
inconsistent for a dimensionless coefficient g, which is non-physical. It is therefore useful to return to the
original expression (33) for the contact force; the dimensions in this equation are as follows:

F ½kN� ¼ y ½mrad�V ½ms�1�

Z 1
0

Re
K

s2

� �
Nm�1

s�2

� �
do ½s�1�. (40)

In Eq. (40) K represents some overall stiffness parameter. Comparing Eqs. (38) and (39) to Eq. (40) it is
obvious that the integral expression has been replaced by the constant g, which therefore should have a
dimension (namely (N s/m)), accounting for the effect of a dynamic system stiffness (in which all masses and
stiffnesses in the system are involved). Eqs. (38) and (39) can be used alternatively in a normalised form, with a
dimensionless coefficient.

In Fig. 6 the effect of the length of the basis on the wheel–rail interaction is shown, for y ¼ 2mrad,
V ¼ 38.9m/s (140 km/h). The P1 force needs a basis of about 10mm (which is approximately the size of the
contact patch) in order to reach its ‘natural’ peak value. If the basis is long enough, a narrow and a broad peak
appear in the contact force (the P1 and P2 force, respectively). For the considered parameters (and without
damping), the magnitude of P2 exceeds P1.

The effect of different track parameters on the P1 and P2 forces is shown in Fig. 7. Simulations have been
performed for a doubled and a halved foundation stiffness with respect to the reference situation, and a rail
bending stiffness and a rail inertia both reduced with a factor 5. From this figure it can be concluded that the
rail inertia, and to a lesser degree, the rail bending stiffness, govern the P1 force, whereas the rail support
stiffness, and to a small extent the rail bending stiffness, govern the P2 force.
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The diagrams in Fig. 8 show the dependence of the P1 and P2 forces on the rail properties more into detail.
As the linear influence of the slope y and the velocity V is known, their values are taken constant, at 2mrad
and 38.9m/s (140 km/h), respectively. In Fig. 8a, the influence of the rail bending stiffness (in comparison to
the reference stiffness of 54 E1) on the magnitude of P1 and P2 is shown, for a constant rail mass (54 E1). In
the region which is relevant for common rail profiles, both the trends for P1 and P2 show an approximating
exponential behaviour as a function of the bending stiffness. In Fig. 8b, the influence of the distributed rail
mass (for a constant bending stiffness (54 E1)) is shown. In the region of interest, the trends of both P1 and P2

can be approximated as linear. Both figures show that the influences of both the rail inertia and the rail
bending stiffness on P1 are most important, whereas the influence of the rail inertia on P2 is negligible.
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It has been reported in Ref. [31] that during passage of a train wheel over a rail weld irregularity the track
follows the excitation quasi-instantaneously, whereas the wheel displacement shows a delay in response
relative to the track, owing to it larger inertia. This conclusion is verified with the present model in Fig. 9,
where the displacements of the rail and the wheel are shown for a ramp of 2mrad, a train velocity of 38.9m/s
(140 km/h) and a basis length of 25mm (to study the P1-behaviour; in Fig. 9a) and 400mm (to study the
P2-behaviour; in Fig. 9b), respectively. In Fig. 9, also the differential displacement of the wheel and the rail is
shown as a function of time. In the response of a mechanical system being dynamically excited, the elasticity
and the inertia may dominate this response, dependant on the frequency content of the excitation.
Comparison of the differential wheel and rail displacement to the excitation as a function of time gives an
indication of the contribution of the elastic component to the dynamic interaction force relative to the inertial
component. When the differential displacement and the excitation coincide, the response is quasi-static.

From Fig. 9a, in which also the excitation in the time domain is plotted, it can be concluded that the rail
indeed follows the irregularity to a large extent during the P1-interaction, whereas the wheel shows a negligible
response within the considered time interval. The differential displacement, which almost coincides with the
rail displacement, does not coincide with the excitation, revealing an important contribution of the inertial
component to the P1-force.

From the graph in Fig. 9b it can be concluded that the wheel and rail displacements both play an important
role during the P2-interaction. The differential displacement coincides almost exactly with the excitation,
indicating a negligible contribution of the inertial component to the P2-force.

In the previous section, the characteristics of the dynamic wheel–rail interaction at short-length rail
irregularities without dominating wavelength have been studied with the basic ramp model. In the next
section, the case of an arbitrary realistic geometry will be addressed. As has been mentioned in the
Introduction, the focus is placed on rail welds.

7. Simulation results for measured welds

As has been explained in Ref. [30], the height of rail welds along the rail is measured electronically using
digital straightedges with a finite sampling interval. The measurements used in this paper are based on the
eddy current principle. The sampling interval equals 5mm and the measurement basis is 1m. The
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measurement signal cannot be used directly as an input in the simulations because the wheel–rail contact patch
acts as a ‘filter’ for micro-asperities in the rail surface. The roughness on the 5mm scale does not affect the
dynamic wheel–rail interaction on the considered global scale, i.e. not accounting for the stress distribution
within the contact patch. Therefore, a continuous 5-point-smoothing (running average over 25mm) is applied
to the measurement signal before using it as an input in the calculations. Other filters have been proposed in
the literature, such as the well-known heuristic filter of Remington [41]. However the latter filter leads to
negative values for short wavelengths just above the contact patch diameter. Here, a simple 5-point-smoothing
(running average) of the discrete measurement data is chosen. In Ref. [42] it is shown that the effect of contact
filters becomes only relevant for wavelengths comparable to or smaller than the size of the contact patch along
the rail.

The graphs in Fig. 10 show examples of the time histories of the contact force according to expression (35)
for two measured welds, for a train velocity of 38.9m/s (140 km/h). Also shown are the measured geometry
(sampling interval 5mm) and the geometry after continuous 5-point-smoothing (i.e., the input for the
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calculation). The first weld is rather well aligned, but it shows a high degree of roughness on a small scale
(order 1mm) and, at the centre, the effect of non-homogeneous shrinkage of the weld and parent material
after the grinding process, which has obviously been performed at a too high temperature. The second weld is
smooth on a micro-scale, but shows a severe misalignment before the rail ends have been welded together,
resulting in a sharp step of about 2mm in rail height over 25mm. For the first weld the dynamic component of
the contact force does not exceed 20 kN. For the second weld, the maximum dynamic force exceeds 300 kN,
followed by a contact loss, since the dynamic force component exceeds the static preload (112.5 kN). The real
maximum contact force is expected to be somewhat higher due to the nonlinear stiffening of the Hertzian
contact spring during its almost instantaneous compression at Vt ¼ 0.47m. Furthermore, the linear
calculation cannot deal with the contact loss. When the studied weld is overpassed in the track by trains in the
positive x-direction, it will have a very short lifetime with a severe risk of brittle failure. At 83.3m/s (300 km/h)
the maximum force increases to more than 800 kN followed by a dip to less than �500 kN in a linear
calculation, indicating repeated loss of contact and impact loading.

As has been stated before, a perfectly linear relation between Fmax and ymax does not exist for an arbitrary
irregularity due to the mutual influence of the force histories for each discrete slope, especially with the
sampling interval approaching zero in a continuous signal. Therefore, the accuracy of any relationship
between the extreme value of the contact force and a geometrical parameter of the irregularity depends on the
statistical distribution of this geometrical parameter over the irregularity. For example, if the first derivative of
the irregularity has a narrow distribution, the slope variation along the irregularity is restricted and the mutual
influence of the time histories of the force for each discrete slope is also restricted.

In the previous section, the distribution of the discrete slopes was considered for a single given weld. Now,
the distribution of the maximum absolute inclination for a large number of welds is considered. The higher
this inclination, the more variation in slope is possible, implying that the mutual influence of the time histories
of the contact force for the discrete slopes of a given irregularity will also increase. Therefore, when a large
number of welds is considered, the scatter in the relationship between maximum inclinations and contact
forces will increase with increasing maximum inclination, as will be confirmed by the results in the following.

In Ref. [31] a correlation analysis has been performed for a population of 239 measured rail welds, in which
the relationships between different geometrical parameters of the welds and the variables describing the
dynamic wheel–rail response were investigated with a FE model. The model developed in this paper is a
practical tool to validate the results of this correlation analysis, for the same set of weld measurements. In
order to keep this analysis concise, it will be restricted to the dynamic contact force, which is the most
important variable.

In Fig. 11 the maximum absolute dynamic wheel–rail contact forces (during the time interval of overpassing
the weld) are shown as a function of the maximum absolute inclinations of the welds. It is observed that the
scatter in the forces increases with increasing maximum absolute inclination, as has been explained. For all
velocities, a linear fit through the origin is shown; its equation and coefficient of determination are displayed
too. Apart from the linear fits through the origin, also the linear regression lines are shown in the cases that the
coefficients of determination R2 for both cases differ. Similarly to the results obtained in Ref. [31], the
correlation between forces and maximum inclinations increases significantly with the velocity. This can be
explained by a more flat transfer of the system as the excitation frequency band shifts towards higher
frequencies with increasing speed. For a perfectly flat transfer, there would be a perfect correlation between
geometry and contact force.

For 38.9m/s (140 km/h), the results are also shown on a logarithmic scale in Fig. 11; the results projected on
both axes may then be represented as Gaussian distributed, with a given mean value. This result is valid for all
velocities and will be addressed more extensively in Section 9.

In Fig. 11, the maximum absolute inclination of the 5-point-smoothed signal (with a sampling interval of
5mm) is plotted on the horizontal axes. This signal, artificially ‘filtered’ by the contact patch, also served as an
input in the force calculations; the timestep for the evaluation of the integrals was Dt ¼ 5mm/V, which lead to
convergent results. In the determination of the QI of rail welds [30,31], the maximum absolute inclination of
this signal is taken on a different, 25mm basis (only each 5th sampling point is used), resulting in a loss of
information, but rendering the method more apt for practical purposes. Therefore, the results in Ref. [31] are
not directly comparable to the results in Fig. 11. The relation between both the maximum absolute inclinations
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of the continuously 5-point-smoothed signal with the original sampling interval of 5mm and the one with
extended sampling interval of 25mm (as used in the determination of the QI) is shown in Fig. 12. For correct
comparison, it should be noted that the extension of the sampling basis results in a maximum absolute
inclination which is equal to or smaller than the original inclination.

The linear relationships between the dynamic force and the maximum absolute inclination from Fig. 11 are
reproduced in Fig. 13a for all train velocities. In Fig. 13b, the dependence of the dynamic force on the train
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speed is shown for a given maximum inclination (5mrad). It is obvious that the relationship between the
dynamic force and the train speed can be described very well as directly proportional, which confirms the
results of the analysis performed in Ref. [31].

With the results shown in Fig. 13, the coefficient g in the general relationship (38) can be validated for rail
welds, resulting into the following normalised expression:

Fdyn;max

F ref
¼ 0:19 y

V

V ref
ðF ðkNÞ; V ðm=sÞ; y ðmradÞ; F ref ¼ 1 kN; V ref ¼ 1m=sÞ. (41)

From the analysis in Ref. [31], g ¼ 0.22 was found for rail welds. In this paper, g ¼ 0.18 was found for the
perfectly linear relationship for the theoretical case of a ramp with one single slope, and g ¼ 0.19 for rail welds.
The numbers are very close; the somewhat higher value from Ref. [31] may be explained from the fact that
inclinations on a 25mm basis have been used. As has been remarked before (Fig. 12), the inclination can only
decrease when the sample interval is extended from 5 to 25mm. Because the forces remain unaffected, the
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coefficient will then increase. Further, the difference in the models applied in this paper and in Ref. [31] is not
expected to affect the results significantly. It can be concluded that gE0.2 in practice (for 54 E1 rail).

Gullers et al. [43, Figs. 8 and 9] show examples of measured wheel–rail contact forces on the Swedish
network (7 peaks in about 22m); also the geometry of an irregularity corresponding to one of the peaks
(without indication to the exact position of the peak) is given. Application of formula (41) yields for this case
(yE15mrad; V ¼ 48.6m/s): Fdyn,max ¼ 0.19� 15� 48.6 ¼ 139 kN. The static load of 60 kN yields a total
maximum load of 199 kN. The order of magnitude (ranging from 150 to 200 kN for all force peaks) is correct.

The results in Fig. 11 are for a train, passing the welds in one single direction. This is realistic for a railway
network, on which trains, on a given piece of track, commonly run in only one direction. However, the
development of the force is dependant on the train running direction. Therefore, one would expect a better
correlation between maximum absolute inclinations (which are direction-independent) and forces if the
extreme value of the force is taken for a train passing the welds in both directions. The results are shown for
38.9m/s (140 km/h) in Fig. 14. It is observed that the gradient of the linear fit increases (indicating a higher
force level for a given maximum absolute inclination), whereas the correlation does not change significantly.
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This is confirmed by the results for the other velocities; the force levels when considering two directions are
about 5–10% higher than in the case of only one running direction.

8. Statistical properties of wheel–rail interaction at rail welds

In Ref. [30] it has been demonstrated that the discrete first derivatives of rail welds are Gaussian distributed
with zero mean value (except for the tails). The maximum discrete first derivatives of a large population of
welds proved to be very well approximated by a lognormal distribution.

In Fig. 15, the maximum absolute inclination and its logarithm (for the 5-point-smoothed signals) are
shown as a function of the standard normal variable for the measured weld sample which was used in the
simulations. If the logarithm is taken, the result is approximately linear. This confirms that the maximum
absolute inclination of a large number of rail welds may be represented by a lognormal distribution.
Therefore, the projections of the data points in Figs. 11 and 14 on the horizontal axes may be considered as
lognormally distributed (as is shown in Figs. 11 and 14 for 38.9m/s (140 km/h)).

Now, the distribution of the maximum dynamic forces in Fig. 11, for the whole sample, is addressed. Thus,
the projection of the data points on the vertical axes is considered. This distribution gives the distribution of
the dynamic forces occurring over a railway network at welds, for a given distribution of the maximum
absolute inclinations of the welds. It gives no information about the scatter in the deterministic relationship
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Table 2

Statistical properties of rail weld geometry (239 measurements) and maximum dynamic contact forces

Mean value Standard deviation Coefficient of variation

Maximum absolute inclination 3.75mrad 2.7mrad 0.72

Force: 40 km/h 9.6 kN 9.2 kN 0.96

Force: 80 km/h 15.0 kN 10.5 kN 0.70

Force: 140 km/h 28.4 kN 18.3 kN 0.64

Force: 200 km/h 41.5 kN 31.1 kN 0.75

Force: 300 km/h 58.8 kN 45.8 kN 0.78
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(41), for a given inclination; this aspect, which is linked to a vertical cross-section in Fig. 11, will be addressed
later.

In Fig. 16a, the maximum dynamic contact forces and the maximum of their absolute values are plotted as
versus the standard normal variable (V ¼ 38.9m/s (140 km/h)). In Fig. 16b, this is repeated for the logarithm
of the forces. The resulting functions in Fig. 16b can be well approximated by a straight line (a base of 10 leads
to similar results). This result is valid for all velocities. Therefore, the maximum dynamic contact force
occurring at rail welds may be represented by a lognormal distribution, with mean and standard deviation
varying as a function of the train speed. In Fig. 11 this is shown for 38.9m/s (140 km/h) (vertical axis).

In Fig. 17 the probability density functions of the maximum absolute inclination and of the maximum
dynamic contact force are shown for different velocities. The probability density function of the force shifts
towards higher values with increasing speed, the top value drops and the function becomes more ‘stretched’.

Fig. 18 shows the linear relationship between the mean value of the maximum dynamic wheel–rail contact
force and the train velocity. For different velocities, the probability density corresponding to the force
distributions is now quantified on a separate vertical axis. The values of the statistical parameters of the
distributions are given in Table 2. With Fig. 15 the distribution of forces occurring at rail welds over a railway
network can be easily estimated for different train velocities, once the mean value of the maximum absolute
inclination of a population of measured rail welds is known. The standard deviation must be estimated as a
percentage of the mean value. For this reason also the coefficient of variation is given in Table 2, as a measure
of the statistical dispersion of the force. There is no clear link between the standard deviation and the velocity,
which is related to the non-uniform frequency transfer of the wheel–rail system.

The graphs in Figs. 11 and 14 show a considerable scatter in the results for a given inclination. Studying the
results for a given inclination is equivalent to considering a vertical cross-section in the graphs. This scatter in
the deterministic relationship (41) is due to the impossibility to reduce the dynamic wheel–rail interaction to a
purely geometrical problem. The fact that the scatter in the results increases with increasing inclination was
already explained in the previous section. However, the distribution of the forces for a given inclination and its
relation to the value of the inclination cannot be further analysed, by lack of data: 4 values of the inclination
with 5 data points (4 sets of 5 welds with the same maximum absolute inclination) and 1 inclination value with
6 data points are available; all other inclination values occur less frequently. Therefore, results of the normal
or lognormal probability test do not give a clear answer.

9. Discussion and conclusions

In Section 7, the time-scale of the P1 peak was found to range from about 0.5 to 0.75ms, which corresponds
to a length-scale (half-wavelength) of about 20–30mm at a regular line-speed of 38.9m/s (140 km/h). At
69.4m/s (250 km/h; high-speed lines) the length-scale corresponding to the P1 force is about 35–48mm (the
time-scale does not vary significantly). Short-pitch rail corrugations have a wavelength which typically ranges
from 25 to 80mm. This means that non-smooth irregularities causing P1 forces can be an important source of
short-pitch corrugations.

Based on laboratory experiments, in Ref. [44] a corrugation mechanism was proposed, initiated by
excitation of a ‘contact resonance’ in the wheel–rail interface, as can be easily excited at a weld. The resonance
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Fig. 19. Squats in the hardness minima in the heat-affected zone at the surface of an aluminothermic rail weld.
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in the interface leads to periodically varying micro-slip and wear in the contact, causing short-pitch
corrugations. However, the wavelength of such corrugations should be proportional to the speed, which is not
or only very weakly observed in practice.

Not all aspects of the corrugation process can be explained by a fluctuating contact load or fixed resonances
or anti-resonances of the wheel–track system, as pointed out in Refs. [45,46]. However, since the contact
mechanics in the plane of the wheel–rail interface are directly related to the contact mechanics in the normal
plane, a non-constant contact force must have a significant impact on the formation of corrugations
[17,47–49]. Rail welds, which moreover exhibit non-constant metallurgical properties along the rail surface,
therefore are often considered, and also observed in practice, as possible corrugation or also squat initiators,
as observed in Refs. [16,19,20] (see Fig. 19). The studies in Refs. [21,32] showed the importance of the
smoothness of the rail surface and the level of dynamic contact forces also for the initiation or propagation of
RCF. The effect of a fluctuating contact load on non-uniform plastic deformation (shakedown) along an
irregular rail was investigated in Ref. [50].

In this paper, a model for dynamic wheel–rail interaction at rail irregularities of arbitrary geometry has been
developed. The model was formulated in the frequency domain, leading to relatively simple closed-form
solutions for the variables describing the dynamic wheel–rail interaction.

This model has been applied to investigate the basic features of dynamic wheel–rail interaction for short rail
irregularities with a broad-band spectrum. For the theoretical case of a ramp in the longitudinal rail surface,
the maximum contact force (P1) has been proven to be directly proportional to the inclination of the ramp and
the train speed. The influence of the rail properties (bending stiffness and distributed mass) on the contact
force has been investigated. The results showed that (i) P1 and P2 increase with increasing bending stiffness, (ii)
P1 increases strongly and approximately linearly with increasing rail mass, and (iii) that P2 decreases slightly
with increasing rail mass. During P1-interaction, the rail follows a surface irregularity to a large extent,
whereas the wheel displacement is negligible. Both inertial and elastic contributions to the dynamic force are
of major importance within this time interval. During P2-interaction both wheel and rail displacements
have comparable magnitudes. The inertial component of the dynamic force is negligible in comparison to the
elastic one.

Furthermore, the model has been applied to calculate dynamic wheel–rail contact forces for a sample
population of measured rail welds. Relationships between the maximum dynamic contact force, the maximum
absolute inclination of a weld and the train speed have been derived. Finally, the statistical distribution of
dynamic forces at welds occurring over a railway network has been considered, given a scan of the weld
quality. These distributions proved to be lognormal. The distribution functions have been derived as a
function of the average running speed and the mean value and standard deviation of the lognormally
distributed maximum absolute weld inclinations.
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